If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2+17a+2=0
a = 8; b = 17; c = +2;
Δ = b2-4ac
Δ = 172-4·8·2
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-15}{2*8}=\frac{-32}{16} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+15}{2*8}=\frac{-2}{16} =-1/8 $
| 144=18xx | | x^2-6x=15=0 | | 12(+3)=60+6x | | 41=3+2x | | 5+20x=12000 | | 0,5x-2=1,4 | | 70=236-u | | 5x+20=12000 | | 1=x+2/9 | | -32=-2(y+9) | | 91=-5n-4 | | 3x^2-2x=40 | | x+40=(2x+8) | | -23=-2+7k | | X/x2=400 | | j/3+3.08=5.08 | | x3+6x2+10x=0 | | h=-35h(3)= | | s/5-1=24 | | −3n+4=n-8 | | h=-35h(3) | | 6(h+20)=330 | | 24c+40=180 | | y-28=9 | | (1/150)/(1/300)x1.2=X | | k/5-19=5 | | n/19-3=3 | | h/23+823=842 | | 8+7x=-15+7x | | 15s-52=608 | | -4(7n-6)-8=-6n-36 | | -2z/3+5=9 |